Tracer Estimation of Attenuation Factors at Vapor Intrusion Sites

Per Loll, R&D Manager, Ph.D., DMR A/S

Poul Larsen, Hans-Henrik Clausen, Nanna Muchitsch & Claus Larsen, DMR A/S Niels Bergsøe, Danish Building Research Institute, Aalborg University Hanne Østergaard, Northern Region of Denmark Mariam Wahid, Capitol Region of Denmark

Battelle, May 24, 2016

DM

Vapor Intrusion Framework

- The subsurface contribution of VOCs to the indoor environment is a function of:
 - a. Sub-slab VOC concentrations and spatial distribution.
 - Vapor intrusion pathways number and placement. C.
 - Differential pressure (subsurface to indoor). d.
 - Building ventilation e.

Under Danish conditions, the pressure driven contribution is approx. 70-85% of the total contribution (diffusion + advection).

DMR

The Tracer Technology

- Two PFT (PerFluorcarbon Tracers) tracer gasses (PMCP & PMCH).
- Tracers are released at a constant rate on the source side.
- Passive sampling (2 weeks) on both source and receptor side.

TABLE 6.6—PROPERTIES OF THE MOST FREQUENTLY APPLIED PERFLUOROCARBON GAS TRACERS (after Dugstad ¹¹)				
Perfluorocarbons Tracer	Abbreviation	Chemical Formula	Molecular Weight	Boiling Point
Perfluoromethylecyclopentane	PMCP	C_6F_{12}	300	48
Perfluorodimethylcyclobutane	PDMCB	C_6F_{12}	300	45
Perfluoromethylecyclohexane	PMCH	C7F14	350	76
1,3 Perfluorodimethylcyclohexane	1,3-PDMCH	C_8F_{16}	400	102

- Based on tracer results, an attenuation factor (AF) is estimated.
- COCs measured on source side.

Danish Building Research Institute (Brookhaven NL)

- The contribution from a given source (area) can then be estimated.
- Two commercially available systems in Denmark:

Eurofins

Indoor air concentrations are measured using passive samplers – ORSA (2 week samples).

- We have applied the PFT technique on different problems relating to the vapor intrusion framework.
 - Both quantitative and qualitative problems.
 - Hypothesis testing, some of which are related to concentration vs. flux.
- We have applied the technique to a variety of problems and structures, including:
 - Vapor intrusion through a crawl space.
 - Vapor intrusion through cavity walls.
 - Vapor intrusion due to industrial activities.
 - Vapor transport across floor decking in apartment buildings.
 - Vapor intrusion through basements.
 - Vapor intrusion through sewer systems.

Contribution from Crawl Space and Cavity Walls

Crawl Space: Tracer Study Set-up

DMR

- PFT set-up (emitters deployed 1 week before samplers).
 - 5 PCMH emitters deployed in the crawl space.
 - 7 PCMP emitters deployed in ground floor rooms.
 - 16 samplers: 4 in the crawl space, 7 at ground floor and 5 on the 2^{nd} floor.

 4 ORSA-samplers for measuring TVOC in the crawl space (same positions as PFT samplers) – 2 week sampling period.

Crawl Space: Results

PMCH deployed in crawl space

PMCP deployed in ground floor rooms

DN

Attenuation factors based on average results:

	PMCH [pl]	PMCP [pl]
2 nd floor	32,0	143
Ground floor	220	551
Crawl space	718	234

- Crawl space to ground floor (220/718): 0.31
- Crawl space to 2nd floor (32/718): <u>0.045</u>
- Ground floor to crawl space (234/551): 0.44
- Ground floor to 2nd floor (143/551): <u>0.26</u>
- Ground floor to 2nd floor (32/220): 0.15
- Two different types of flooring (just approximate estimates):

• Crawl space contribution estimated from VOC concentration and AFs.

- Wood (365/795): <u>0.46</u>
- Concrete (196/692): <u>0.28</u>

Cavity Walls

- We suspected an issue with VI through cavity walls.
 - So we measured the TVOC concentration in six spots (active sampling on Dräger carbon tubes).

PV

 But we are interested in the mass flux – not just concentration.

Cavity Wall: Tracer Study Set-up

• PFT set-up (emitters deployed 1 week before samplers):

- 2 PMCH emitters deployed in hot-spot (1 m bgs.)
- 2 PMCP emitters deployed in cavity wall.
- 4 samplers in UZ (0.5 and 1 m bgs.)
- 4 samplers in cavity walls (left and right)
- 11 samplers in rooms (as before)

Cavity Wall: Results

PMCH deployed in the hot-spot (1 m bgs.)

PMCP deployed in cavity walls above foundation

- Hardly any lateral tracer transport.
- Nice break-through to soil 0.5 m bgs.
- Very low break-through to left wall.
- Nice break-through to right wall.
- Low tracer concentrations in building.
- Slight back-flow to soil 0.5 m bgs.
- No vertical transport in left wall.
- Good vertical transport in right wall.
- Nice break-through to building; more to ground floor than 2nd floor.

Attenuation factors:

Cavity wall to ground floor (167/746): <u>0.22</u> Cavity wall to 2nd floor (48/746): <u>0.064</u> Cavity wall to ground floor (9,3/135): <u>0.068</u> Cavity wall to 2nd floor (5,6/135): <u>0.041</u>

Basement Activities

- Complaints about gasoline smell by workers and parents in a pre school daycare center (ground level) in building complex.
 - Suspected link to motorcycle repair shop in basement (no direct access).
 - Other possible sources: Parking basement and other businesses.

- We did initial measurements at the site: Shop: 14.000 μg/m³ TVOC and 410 μg/m³ benzene. Daycare: 1.300-3.000 μg/m³ TVOC and 28-96 benzene.
- No regulatory limits for this type of situation (business to daycare) in Denmark.

Basement Activities: Study Set-up

- PFT set-up (emitters deployed 4 days before samplers).
 - 3 PMCP emitters deployed in repair shop
 - 5 samplers in repair shop
 - 6 samplers in daycare
 - VOCs measured in same points
- 2 week sampling period

Battelle, May 24, 2016

DM

Basement Activities: Results

Based on the VOC results, the public health physician had the daycare moved to another location.

- 70-80% of TVOC and benzene in daycare could be explained by repair shop.
- The rest is due to internal sources (e.g. paints and house hold products).

Active Dry Cleaning vs. Old Soil Contamination

- At a site with an old PCE spill under a still active Dry Cleaners we had to estimate the contribution of PCE to above apartments.
 - $6 \,\mu g/m^3$ can be tolerated from the old spill.
 - 100 μ g/m³ can be tolerated from the Dry Cleaners (only in \star apartments).

Active Dry Cleaners: Set-up and Results

- Study focused on apartments right above the Dry Cleaners.
 - 4 PMCH emitters deployed in Dry Cleaners.
 - 5 samplers in Dry Cleaners.
 - 8 samplers in each apartment.

PCE vs. tracer in dry cleaner:

16

<u>Left apartment:</u> AF (1.4/16,9): <u>0.083</u> Est. contribution: 13 µg/m³ <u>Right apartment:</u> AF (3.4/59): <u>0.057</u> Est. contribution: 74 µg/m³

 Contribution from Dry Cleaners 54-67% of total PCE. Both < 100 μg/m³.

- PFT tracers have been successfully applied as a powerful tool in several vapor intrusion studies.
 - An excellent tool for hypothesis testing.
- Average 2 week "long" term building behavior is investigated (using passive samplers), rather than random short term behavior.
- Attenuation factors can be estimated and used to quantitatively assess contributions from different sources.
- Use of tracers can lead to a better system understanding/CSM -> better risk assessments and remediation decisions.

Questions?